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Rhythm in a saline oscillator

Mina Okamura1 and Kenichi Yoshikawa2
1Division of Informatics for Natural Sciences, Graduate School of Human Informatics, Nagoya University, Nagoya 464-0814, J

2Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan
~Received 7 July 1999!

An oscillatory flow of water is generated when a cup containing saline water, with a small orifice in its base
~ca. 1 mm in diameter!, is placed within an outer vessel containing pure water. To clarify the mechanism of
rhythmic fluid flow in this so-called saline oscillator, we performed a numerical simulation with the Navier-
Stokes equation of this rhythmic flow in three dimensions. The essential features of the rhythmic flow were
reproduced with the numerical simulation. We concluded that the pressure term is the most important for
driving the oscillation, whereas the inertia and viscosity terms always depress oscillation. It becomes clear that
osmotic pressure has a negligible contribution. Based on this analysis of the contributions of individual
components to the rhythmic flow, the system dynamics can be reduced to a second-order ordinary-differential
equation, i.e., the Rayleigh equation.

PACS number~s!: 05.70.Ln, 47.20.Bp, 82.40.Bj
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I. INTRODUCTION

In nature, hydrodynamic flow accompanied by a tim
dependent change in density is quite common, e.g., mix
of a river with sea water, front movement in weather, circ
lation of blood in the body, etc. Thus, it is very important
understand the essentials of such convection-diffusion
tems. However, even for conditions of no diffusion or
spatial gradient in density, the Navier-Stokes equation d
not provide an analytical solution. It is well known that th
inability to solve convection-diffusion systems deeply co
cerns the generation of ‘‘unexpected’’ phenomena, e
chaos in a Lorenz attractor. The aim of the present rese
was to identify an intrinsic property buried in the ‘‘comple
ity’’ of a convection-diffusion system, by examining a cur
ous rhythmic phenomenon, the so-called saline oscilla
@1–9#.

Rayleigh-Bénard convection, which is caused by the a
plication of a temperature gradient, is a similar wide
known system for the spatiotemporal self-organization
fluid in a vessel@10#. Here we will examine oscillatory phe
nomenon driven by a density gradient under isothermal c
ditions, i.e., without a temperature gradient. The saline os
lator was discovered by Martin in 1970@1#. He observed a
rhythmic change between upward and downward flow wh
a wide cylinder equipped with a narrow glass tube contain
saline water was dipped into an outer vessel with pure wa
In this system, decaying oscillation is observed on the or
of ten cycles@2#. Instead of using this experimental appar
tus, if one uses a cup with a small orifice on the bottom,
shown in Fig. 1~a!, rhythmic flow is generated with almos
constant amplitude and periodicity@3–9#. If the experiment
is begun with the level of saline water in the inner cup nea
equal to the level of pure water in the outer vessel, due to
imbalance in hydrostatic pressure, the saline water begin
flow downward through the orifice. After a while, the dow
ward flow terminates, and the pure water in the outer ve
begins to go upward through the orifice. This cycle repe
for more than 100 cycles@Fig. 1~b!#.

Martin seems not to have been aware that this rhyth
PRE 611063-651X/2000/61~3!/2445~8!/$15.00
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phenomenon exhibits the characteristics of a nonlinear
namical system. It has been subsequently shown that a s
oscillator exhibits various behaviors typical of a nonline
oscillator, i.e., limit-cycle oscillation, bifurcation of the os
cillatory mode, and entrainment among oscillators@4–9#. For
example, when two cups, with nearly the same orifice s
and the same concentration of salt, are immersed int
single outer vessel, i.e., when the intrinsic periods of the p
of saline oscillators are similar but not necessarily the sa
self-synchronization, or mutual entrainment, is generated
tween the oscillators. It has been shown that the phase
ference is locked atp, i.e., antiphase entrainment. The stu
of coupling in such simple and ‘‘visible’’ nonlinear oscilla
tors is expected to be useful for understanding the fundam
tal mechanisms of synchronization in living systems, such

FIG. 1. ~a! Experimental apparatus for the saline oscillator. T
outer vessel and the inner cup are filled with pure water and sa
water, respectively.~b! Schematic representation of oscillatory flo
in the saline oscillator.
2445 ©2000 The American Physical Society
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2446 PRE 61MINA OKAMURA AND KENICHI YOSHIKAWA
in beating heart cells and neural spiking, and circad
rhythm in multicellular organisms@11#. If the essential as-
pects of such a visible nonlinear oscillator can be descri
in simple mathematical terms, it should be helpful for und
standing nonlinear rhythmic phenomena in physics, chem
try, and biology. In the present study, we performed a
merical simulation on the curious periodic flow in a sali
oscillator. The main purpose of this study was to identify t
essence of the mechanism of this oscillatory phenome
through an analysis of the numerical simulation. In expe
mental studies, it is almost impossible to monitor tim
dependent changes in the spatiotemporal structure, suc
the velocity and energy dissipation at distinct points. On
other hand, a numerical study can provide detailed inform
tion on the spatiotemporal changes in various physical
rameters.

II. PROCEDURE FOR THE NUMERICAL SIMULATION

We performed a computer simulation of a saline oscilla
with a three-dimensional flow field. We used the basic eq
tions for an incompressible unsteady viscous fluid. Flow c
be described by the Navier-Stokes equation, Eq.~1!, and an
equation of continuity, Eq.~2!,

]rU

]t
1~U•“ ! rU52“P1m“

2U1rg, ~1!

]r

]t
1“•~r U!50, ~2!

whereU5(u,v,w) is the velocity;P is the pressure;r is the
density of the fluid;g5(0,0,2g) is the gravitational accel
eration; andm is the coefficient of viscosity. Note thatr is a
spatiotemporal variable in our system,r5r(x,y,z,t). For
pratical purposes, the density of a fluid can be given as
sum of the density of waterr0, and the density of saltrs .
Thus, we evaluated the effects of density changes with
following equation of mass conservation, which includes
effect of diffusion,

]rs

]t
1“•~rs U!5Ds“

2rs , ~3!

wherers is the density of salt andDs is the diffusion coef-
ficient of salt.

We chose to use a cylindrical coordinate system with
origin at the center of the orifice with depthd and radiusa
~see Fig. 2!, so thatr andz are the radial and vertical coor
dinates. We assume that the flow shows radial symm
with respect to the vertical axis, and we use the Boussin
approximation in the equations of motion. With this fram
work, the basic equations become
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whereu andw are the radial and vertical velocities, respe
tively; n(5m/r0) is the kinematic viscosity.

In addition to the above equations for fluid motion, w
must also consider the effect of the free surface. For
purpose, we adapted the so-called volume of fluid~VOF!
method@12#. In this method, a functionF(x,y,z)5@0,1# is
defined asF51 for spatial elements fully occupied by flui
and F50 elsewhere. The summation ofF over the entire
system is constant and equals the fractional volume of
cells occupied by fluid. The time dependence ofF is gov-
erned by the following equation:

]F

]t
1

1

r

]

]r
~rFu !1

]

]z
~Fw!50. ~8!

We performed calculations with the above equations us
fluid-dynamic analysis software,FUJITSU/a-FLOW, provided

FIG. 2. Coordinates in the saline oscillator.r andz are the radial
and vertical coordinates.r in , inner radius of the cup;r out , radius of
the outer vessel;a, radius of the orifice;b, thickness of the inner
cup; d, depth of the orifice;r in(5r01rs

0), initial density in the
cup; rout(5r0), initial density of the outer vessel;Hin , initial
height of saline water;Hout , initial height of pure water;H0, depth
of the outer vessel. Herers

0 is the initial amount of sodium chloride
per unit volume in the cup andr0 is the density of pure water.
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PRE 61 2447RHYTHM IN A SALINE OSCILLATOR
by FUJITSU LIMITED @13,14#. The parameters and cond
tions for the numerical calculation were as follows.

The system consists of a cup with an orifice at the bott
and an outer vessel, as shown in Fig. 2. The parameters
r in52.25 cm, r out55.0 cm, a50.05 cm, b50.25 cm, d
50.1 cm,H055.9 cm. We divided the domain into 523132
grids in the radial and vertical directions. To take into a
count the effect of the fluid dynamics near the orifice, t
space within the orifice was divided into smaller grids, 534
in the radial and vertical directions, where the ratios of
maximum to minimum grid size are 10 and 4, respective
The finite-difference approximation with a second-order c
tral scheme was used to solve the basic equations, excep
the convection term. For the convection term in Eqs.~4!,~5!,
and ~7!, the quadratic upstream interpolation for convect
kinematics~QUICK! scheme, which is a second-order acc
rate finite-difference method was used@15#. The convection
term in Eq. ~8! was approximated by a donor-accept
method@16#. The slip boundary condition is taken for th
velocity on the wall and the axis (r 50), except for the wall
within the orifice: the normal velocity component vanishes
the wall, and there is no gradient in tangential velocity.
the wall within the orifice, the boundary condition for th
velocity is set to be nonslip: both normal and tangential
locities are always zero on the wall. The free-flux bound
condition is used to reflect the change in concentration.

III. OBSERVATION OF THE OSCILLATOR
IN REAL SPACE

A saline oscillator was constructed with the followin
conditions, essentially the same as in the numerical sim
tion: r in52.25 cm,r out55.78 cm,a50.05 cm,b50.25 cm,
d50.1 cm ~see Fig. 2!. The initial amount of sodium chlo
ride per unit volume in the cup wasrs

050.11 g/cm3 in the
initial condition, indicating thatr in51.11 g/cm3, and rout
51.0 g/cm3 . The experiment was started with both of th
initial heights, Hin and Hout , at about 5 cm. At first, the
saline water begins to flow downward, and after appro
mately 1 min, the downward flow stops. Soon after the fl
stops flowing around the orifice, the pure water in the ou
vessel begins to flow upward through the orifice. This u
ward flow stops after several tens of seconds, and then
saline water again flows downward. This cycle repeats d
ens of times. The period of oscillation is about 24 sec a
stays almost constant; the periodicity increases less than
even after a few hours on the experimental run.

Figure 3~a! shows a picture of the saline oscillator mon
tored with a charge-coupled-device~CCD! camera. In this
figure, saline water or pure water was colored by ink
visualization of the downward flow or upward flow, respe
tively. The change in the level of saline water in the inn
cup was measured with a laser displacement meter~Keyence,
LPB-02, Japan!. The results are presented in Fig. 4. From t
amplitude of the rhythmic flow, it becomes clear that 0.12
of the saline water flows out during each period.

IV. RESULTS OF THE NUMERICAL SIMULATION

The numerical simulation was carried out with the follow
ing coefficients in the basic equations and initial conditio
are
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in Fig. 2: g5980, n50.01 cm2/s, rs
050.1 g/cm3, Hin

54.82 cm, Hout54.99 cm. A small change in the initia
height was shown to have no significant effect on the man
of oscillation. We have, thus, chosen a height difference
as to reduce the induction period before oscillation beg

FIG. 3. Flow profile in the saline oscillator for the downstrea
of saline water~left! and the upstream of pure water~right!. ~a! An
actual experiment in the saline oscillator withr in52.25 cm,r out

55.78 cm, a50.05 cm, b50.5 cm, d50.1 cm, andrs
050.11

g/cm3 . Saline water or pure water was colored by ink for visu
ization of the downward flow or upward flow, respectively.~b!
Computer simulation of the saline oscillator withr in52.25 cm,
r out55.0 cm, a50.05 cm, b50.5 cm, d50.1 cm, andrs

050.1
g/cm3 . See Fig. 2 for abbreviations.

FIG. 4. Experimental results on the rhythmic change in the le
of saline water in the inner cup. The broken lines represent sin
exponential fits for the individual stages, during the upward fl
and the downward flow,x(t)}e2kt1const.
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Under these initial conditions, saline water first began
flow downward, and upward flow began 70 sec later, i
oscillation began at this time. Figure 3~b! shows the spatia
density profile of salt for the states with downward flow a
upward flow. Figures 5~a! and 5~b! show the changes in th
level of saline water in the inner cupx and the average ve
locity at the orificew̄, wherew̄ is defined as

w̄5
2

a2d
E

2d

0 E
0

a

w~r ,z,t !rdrdz. ~9!

The period of oscillation was ca. 41 sec. Based on the cha
in the water level, it is found that 0.16% of the saline wa
escaped from the cup during each period of oscillation. T
may accord with 0.12% in the corresponding experiment
the simulation, as an artifact we noticed that, during the
ward flow in each period of oscillation, the amount of salt
the inner cup increased by 0.001 g, which is considered
have a negligible effect on the manner of the oscillation
the simulation.

V. DISCUSSION

As shown above, our numerical simulation reproduced
experimental trend rather well, except for the difference
the period of oscillation;T524 sec in the experiment an
T541 sec in the simulation. In our actual experiment w

FIG. 5. ~a! Numerical simulation of the change in the level
saline water in the inner cupx. The broken line shows the equilib
rium height (Heq

0 54.59 cm!, where the inner and outer hydrostat
pressures are equal at the center of the orifice;z52d/2. ~b! The

average velocity at the orifice,w̄. ~c! The acceleration at the orifice

dw̄/dt.
o
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r
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n
-
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n

the saline oscillator, there is a small but finite irregular
around the fringe of the orifice. Such an irregularity cou
disturb the laminar flow around the orifice, which would i
fluence the periodicity. Actually, we have confirmed th
little modification on the shape of the orifice~for example,
by making the periphery of the orifice smoother! induces the
lengthening of the periodicity by 30;50%. In addition to
such an experimental problem, there are also some facto
the numerical simulation that particularly affect the perio
icity, such as the size and arrangement of the grids and
boundary conditions. However, taking into account the
factors in both the experiment and the simulation, the diff
ence in periodicity is not considered to be a serious mat

In Fig. 4, the broken lines are depicted as single expon
tial, together with the experimental traces on the height
the level of the saline water. From this, it is clear that in
vidual periods both on upward flow and downward flow
interpreted well with a first-order linear differential equatio
as in Eq.~10!,

ẋ~ t !52kx~ t ! ~k.0!. ~10!

The next problem is how to interpret the process of
switching of the flow direction. Let us consider the critic
hydrostatic pressure required to stop the downward flow
saline water and to initiate the upward flow of pure wat
Based on the conservation of the total fluid volume, t
changes in the heights of saline and pure water,Dh andDh8,
are related to each other by the ratio of the surface area
the inner cup and the outer vessel,Sin andSout ,

Dh852
Sin

Sout
Dh. ~11!

The initial equilibrium height,Heq
0 is given by

Heq
0 5Hin2Dh, ~12!

whereDh is obtained from the following equation:

~rs
01r0!gS Hin1

d

2
1DhD5r0gS Hout1

d

2
1Dh8D .

~13!

From Eq.~13!, Heq
0 is calculated to be 4.59 cm in the firs

cycle of the oscillation. As we mentioned in Sec. IV, th
density difference decreases with oscillatory flow. By den
ing DHeq as the difference between successive oscillatio
the equilibrium height of thenth oscillation,Heq(n) is given
by

Heq~n!5Heq
0 1~n21!DHeq . ~14!

From the result of the numerical simulation,DHeq is calcu-
lated to be 1.6831024 cm. By adapting a ‘‘moving axis,’’ as
Dx5x2DHeq(n), the limit-cycle behavior represented b
Dx vs w̄, is given as in Fig. 6, wherew̄ is the average fluid
velocity at the orifice and the interval between the d
points is 0.1 sec. The cycles change asA→A8→B→B8
→A. The temporal changes in the water level, and the av
age velocity and acceleration at the orifice are given in F
5~a!, 5~b! and 5~c!. The flow accelerates upward inA→A8,
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PRE 61 2449RHYTHM IN A SALINE OSCILLATOR
and decelerates duringA8→B. In B→B8, upward flow stops
and downward flow accelerates. InB8→A, downward flow
decelerates. Here, the periods onA→A8 and B→B8 are
shorter than 0.5 sec, corresponding to the process in the
change of fluid within the orifice, from saline water to pu
water and vice versa, respectively. As the switching of
flow is almost abrupt, the magnitude of the acceleration
the moment of the change in flow direction are two orders
large as that during one-directional flow through the orifi
as is clear in the result of our simulation. If we carefu
examine the switching process, it is apparent that just a
the stop of the downward flow of saline water, pure wa
rises upward through the orifice from its edge, and this
ward flow then accelerates. Except for the ‘‘moment’’ of t
switching of the flow, the height exhibits a single
exponential curve in the simulation, corresponding well
the present experiment@Fig. 5~a!#.

To characterize the manner of the fluid motion, let
estimate the Reynolds number in the saline oscillator

Re5
rw̄l

m
, ~15!

where the densityr of the fluid has a value between 1.0 an
1.1 g/cm3, the characteristic lengthl ( l 52a) is 0.1 cm, and
w̄ is at the most 1.9 cm/sec, as shown in Fig. 5. Thus,
maximum Reynolds number is no more than 20. This s
gests that the effect of turbulence is almost negligible in t
phenomenon.

Let us now examine the manner of the periodic flow us
cylindrical coordinates. In the simulation, we have adop
the radial symmetry with respect to the vertical axis. W
think that the numerical simulation on the approximati
with radial symmetry may be almost satisfactory to descr
the oscillator, at least on the switching between upward
downward flow. The driving force is considered to consist
four components; convectionf con , and the gradients of pres
sure f pre , viscosity f v is , and gravity f gra . The effects of
acceleration can therefore be described as follows:

FIG. 6. Numerical simulation of the limit-cycle behavior in th

saline oscillator shown asDx vs w̄, whereDx5x2Heq(n) andw̄ is
the average velocity at the orifice. The interval between the d
points is 0.1 sec.
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]w

]t
5 f con1 f pre1 f v is1 f gra , ~16!

f con52
1

r

]

]r
~ruw!2

]

]z
~w2!, ~17!

f pre52
1

r0

]P

]z
, ~18!

f v is5
1

r

]

]r S rn
]w

]r D1
1

r

]

]r S rn
]u

]zD1
]

]z S 2n
]w

]z D ,

~19!

f gra52g2
rs

r0
g. ~20!

By integrating Eq.~16! over the entire volume in the orifice
the net driving force is given as in Eq.~21!.

2

a2d
E

2d

0 E
0

a]w

]t
rdrdz5

2

a2d
E

2d

0 E
0

a

~ f con1 f pre

1 f v is1 f gra!rdrdz

5Fcon1Fpre1Fv is1Fgra . ~21!

Figure 7 shows the temporal changes in the different co
ponents,Fpre1Fgra , Fv is , Fcon , which accompany peri-
odic flow in the saline oscillator, as deduced from the n
merical simulation. Based on this figure,Fcon and Fv is
always have the role of depressing the oscillation, andFpre
1Fgra accelerates the flow. Figures 8~a!, 8~b! and 8~c! show
the change of the respective term,Fcon , Fv is , Fpre1Fgra ,

ta

FIG. 7. Time-dependent change in the individual component
the force needed to induce acceleration in fluid flow.Fcon is the
convection term,Fpre is the pressure term, andFv is is the viscosity
term, andFgra is the gravity term.
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at intervals of 0.1 sec as in Fig. 6. From this figure, it is cle
that all terms,Fcon , Fv is , andFpre1Fgra are proportional
to the average velocityw̄, except the moment of flow switch
ing. During the continuous upward flow and downward flo
the coefficients ofFcon andFv is are negative and the coe
ficient of Fpre1Fgra is positive. The summation of thes
contributions is negative

dw̄

dt
52kw̄ ~k.0!. ~22!

This result explains why the profile of the water level in
inner cupx is expressed by the profilex(t)}e2kt . The pe-
riod is, thus, determined by the competition between
pressure gradient and damping effect such as viscosity, a
mentioned before.

FIG. 8. ~a! Phase portrait ofFcon(cm/sec2) with respect to the

average velocityw̄(cm/sec) at the orifice.~b! Phase portrait of

Fv is(cm/sec2) with respect to the average velocityw̄(cm/sec), at
the orifice.~c! Phase portrait ofFpre* 1Fgra* (cm/sec2) with respect

to the average velocityw̄ at the orifice. ~d! Phase portrait of

Fpre* (cm/sec2) with respect to the average velocityw̄(cm/sec) at
the orifice.~e! Phase portrait ofFgra* (cm/sec2) with respect to the

average velocityw̄(cm/sec) at the orifice.~f! Phase portrait of
Fpre* 1Fgra* (cm/sec2) with respect to the average velocit

w̄(cm/sec) at the orifice. The interval between the data points is
sec.
r

,

e
we

From the above results and discussion, it becomes evi
that the dynamical behavior is interpreted with differe
characteristic stages between the continuous upward
downward flow, and the switching of the flow. Then, let
discuss further the mechanism of the switching. Based
Fig. 8~a!, it is apparent thatFcon is negligibly small com-
pared to other components. As for the change inFv is , we
have noticed that the first term in Eq.~19! accounts for 96%
of Fv is ; thus, the second and third terms are negligible. W
also noticed that the flow profile at the orifice could be re
resented almost perfectly with a parabola. In fact, there w
actually only slight deviation from ideal Hagen-Poiseui
flow. By introducing a correction factor« to Hagen-
Poiseuille flow,Fv is can be represented as

Fv is52
8n

a2
«w̄. ~23!

By comparison with the results of the simulation,« was de-
termined to be«50.94. Thus, the deceleration of the flo
can almost be characterized by the first term inFv is . Then,
let us now discuss the pressure term in detail. We divide
pressure on both sides of the orifice,z50,2d into hydro-
static pressure and the difference from itP* (z). P* (z) cor-
responds to the effects of the discontinuous density distr
tion and the velocity of the flowing fluid,

P~0!5~rs
01r0!gx1P* ~0!, ~24!

P~2d!5r0g~x81d!1P* ~2d!, ~25!

wherex8 is the level of pure water fromz50 in the outer
vessel and

x852
Sin

Sout
x1S Sin

Sout
Hin1HoutD . ~26!

Using the above expression,Fpre becomes

Fpre52
1

r0

P~0!2P~2d!

02~2d!

5
P* ~2d!2P* ~0!

r0d
2

~r01rs
0!gx2r0g~x8!

r0d
1g.

~27!

We can obtain the second term as a function ofx strictly and
the third term is cancelled by the first term ofFgra . We use
the expressionFpre* , Fgra* as the first term ofFpre and the

second term ofFgra . Figures 8~d! and 8~e! showFpre* vs w̄

and Fgra* vs w̄, as in Fig. 6. The interval between the da
points is 0.1 sec. Based on the results of the simulation,
characteristics onFpre* would be expressed as Eq.~28! with
the symmetry of a cubic function

Fpre* 5w̄230w̄3. ~28!

As shown in Fig. 8~e!, Fgra* is represented as signum fun
tion with a good approximation,

.1
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Fgra* 52
rs

0g

2
1

rs
0g

2
sgn~w̄!. ~29!

From the definition,w̄ is given as

w̄5S r in

a D 2 ]x

]t
. ~30!

As x(t), the level of saline water, is almost independent
the positionr, it may be allowed for us to adapt an ordina
differential instead of the partial differential in the abo
equation,

]x

]t
→ dx

dt
. ~31!

For the above consideration, Eq.~21! becomes as follows
with the substitution ofX to x2Heq ,

d2X

dt2
52AF11BS dX

dt D
2G dX

dt
2v0

2 X1
rs

0g

2
sgn~w̄!1C,

~32!

where A,B,C,v0 are positive constants. It is worth notin
that the first term is always negative. On this different
equation without the constant and signum function, the s
tem becomes a damped oscillator, becausev0

2 is larger than

the square of the coefficient ofw̄. The limit cycle is, thus,
maintained by the repetitive sudden change in the sign of
velocity.

From the characteristics given in Fig. 8~f!, the essential
feature is represented with polynomial expansion throu
numerical fitting

Fpre* 1Fgra* 5251190w̄230w̄31O~w̄4!. ~33!

Thus Eq.~21! can be rewritten as

d2X

dt2
556

dX

dt
21.23108S dX

dt D
3

27X. ~34!

Interestingly, this ordinal differential equation corresponds
the so-called Rayleigh equation@6,7#

d2X

dt2
5Ã

dX

dt
2B̃S dX

dt D
3

2v0
2X, ~35!

whereÃ,B̃,v0
2 are positive constants. The Rayleigh equat

implies the following physical meaning: the third term on t
right together with the left second-time derivative constitu
an oscillator, and the first and second terms on the r
correspond to ‘‘negative’’ and positive friction, respective
In the actual saline oscillator,X is the fluid level from the
equilibrium height, andv0

2 corresponds to Eq.~36! as is
deduced from Eqs.~21!, ~26! and ~27!,

v0
252

g

d S a

r in
D 2S 11

Sin

Sout
1

rs
0

r0
D . ~36!
n

l
s-

e

h

o

n

s
ht

As have been shown both on the simulation and the exp
ment, the system is ‘‘energized’’ due to the sudden chang
the ‘‘effective mass’’ of the flow. Such an abrupt energiz
tion, or the process of switching, exhibits the odd symme
with respect to the fluid velocity. Thus, such an effect can
most simply represented as the cubic function of the velo
as in the second term on the right side in the Rayleigh eq
tion, Eq. ~35!.

In the saline oscillator, energy is stored as gravitatio
instability where the high-density saline water is situat
above the low density of pure water. We took the poten
energy of a discrete fluid cell as

U~ i ,k!5r~ i ,k!DV~ i ,k!gh~ i ,k!, ~37!

where i and k are the grid numbers in the horizontal an
vertical directions, respectively, and reflect the position
the cell. r( i ,k)5r01rs( i ,k) is the density of the cell,
DV( i ,k) is the volume of the cell, andh( i ,k) is the height
from the bottom of the outer vessel. By summing Eq.~37!
over the entire fluid, the net potential energy can be eva
ated. The stored potential energy in the saline water in
inner cup is, thus, calculated to be 23103 @g cm2/s2#, com-
pared to that in the final state where the fluid exhibits
uniform density and the fluid levels in the inner cup and t
outer vessel are the same. Each oscillation consumes 0.
of this stored energy, where 78% of the consumed energ
converted into kinetic energy and the rest is dissipated
viscosity.

The conclusion that the essence of the saline oscilla
can be described with a Rayleigh equation is consistent w
previous findings on coupling between saline oscillat
@4,7,8#, i.e., when two cups of saline water with orifices a
situated in a same outer vessel of pure water, the rhyth
flows self-synchronize in an exact antiphase mode. This
rious behavior has been successfully interpreted by cou
Rayleigh equations, at least phenomenologically. Thus,
present study provides a theoretical basis for why the c
pling between saline oscillators can be rather well simula
with coupled Rayleigh equations.

VI. CONCLUSIONS

~1! The periodic change in fluid flow in a saline oscillat
was reproduced by a numerical simulation with the Navi
Stokes equation.~2! The driving force of this periodic fluid
flow is gravitational instability, and the main origin of en
ergy dissipation is the effect of viscosity.~3! The essential
behavior in a saline oscillator can be interpreted with a n
linear second-order differential equation, the Rayleigh eq
tion.
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