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Rhythm in a saline oscillator
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An oscillatory flow of water is generated when a cup containing saline water, with a small orifice in its base
(ca. 1 mm in diameter is placed within an outer vessel containing pure water. To clarify the mechanism of
rhythmic fluid flow in this so-called saline oscillator, we performed a numerical simulation with the Navier-
Stokes equation of this rhythmic flow in three dimensions. The essential features of the rhythmic flow were
reproduced with the numerical simulation. We concluded that the pressure term is the most important for
driving the oscillation, whereas the inertia and viscosity terms always depress oscillation. It becomes clear that
osmotic pressure has a negligible contribution. Based on this analysis of the contributions of individual
components to the rhythmic flow, the system dynamics can be reduced to a second-order ordinary-differential
equation, i.e., the Rayleigh equation.

PACS numbegps): 05.70.Ln, 47.20.Bp, 82.40.Bj

[. INTRODUCTION phenomenon exhibits the characteristics of a nonlinear dy-
namical system. It has been subsequently shown that a saline
In nature, hydrodynamic flow accompanied by a time-oscillator exhibits various behaviors typical of a nonlinear
dependent change in density is quite common, e.g., mixin@SCi”atOI’, i.e., limit-cycle oscillation, bifurcation of the os-
of a river with sea water, front movement in weather, circu-cillatory mode, and entrainment among oscillafers9]. For
lation of blood in the body, etc. Thus, it is very important to €xample, when two cups, with nearly the same orifice size
understand the essentials of such convection-diffusion sy@nd the same concentration of salt, are immersed into a
tems. However, even for conditions of no diffusion or no Single outer Vessel, i.e., when the intrinsic periOdS of the pair
spatial gradient in density, the Navier-Stokes equation doe8f saline oscillators are similar but not necessarily the same,
not provide an analytical solution. It is well known that the Self-synchronization, or mutual entrainment, is generated be-
|nab|||ty to solve convection-diffusion Systems deep'y Con_tWeen the OSCIllatOI'S.. It haS .been ShOWI’]. that the phase d|f'
cerns the generation of “unexpected” phenomena, e.gference islocked a, i.e., antiphase entrainment. The study
chaos in a Lorenz attractor. The aim of the present researcd® coupling in such simple and “visible” nonlinear oscilla-
was to |dent|fy an intrinsic property buried in the “Comp|ex_ tors is eXpeCted to be useful for Understanding the fundamen-
ity” of a convection-diffusion System, by examining a curi- tal mechanisms of Synchronization in ||V|ng SyStemS, such as
ous rhythmic phenomenon, the so-called saline oscillator
[1-9]. (@) Plastic cup
Rayleigh-B@ard convection, which is caused by the ap-
plication of a temperature gradient, is a similar widely
known system for the spatiotemporal self-organization of
fluid in a vesse[10]. Here we will examine oscillatory phe-
nomenon driven by a density gradient under isothermal con- Saline Water
ditions, i.e., without a temperature gradient. The saline oscil-
lator was discovered by Martin in 1970]. He observed a
rhythmic change between upward and downward flow when
a wide cylinder equipped with a narrow glass tube containing Orifice
saline water was dipped into an outer vessel with pure water.
In this system, decaying oscillation is observed on the order
of ten cycleq2]. Instead of using this experimental appara-
tus, if one uses a cup with a small orifice on the bottom, as
shown in Fig. 1a), rhythmic flow is generated with almost
constant amplitude and periodicifg—9]. If the experiment -_—
is begun with the level of saline water in the inner cup nearly \l/ B
equal to the level of pure water in the outer vessel, due to the Rhythmic
imbalance in hydrostatic pressure, the saline water begins to Downere I change P fow
flow downward through the orifice. After a while, the down-
ward flow terminates, and the pure water in the outer vessel FIG. 1. (a) Experimental apparatus for the saline oscillator. The
begins to go upward through the orifice. This cycle repeatsuter vessel and the inner cup are filled with pure water and saline
for more than 100 cyclelFig. 1(b)]. water, respectively(b) Schematic representation of oscillatory flow
Martin seems not to have been aware that this rhythmidin the saline oscillator.
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in beating heart cells and neural spiking, and circadian
rhythm in multicellular organism§11]. If the essential as-
pects of such a visible nonlinear oscillator can be described
in simple mathematical terms, it should be helpful for under-
standing nonlinear rhythmic phenomena in physics, chemis-
try, and biology. In the present study, we performed a nu-
merical simulation on the curious periodic flow in a saline
oscillator. The main purpose of this study was to identify the
essence of the mechanism of this oscillatory phenomenon
through an analysis of the numerical simulation. In experi-
mental studies, it is almost impossible to monitor time-
dependent changes in the spatiotemporal structure, such as
the velocity and energy dissipation at distinct points. On the
other hand, a numerical study can provide detailed informa-
tion on the spatiotemporal changes in various physical pa- Pt
rameters. !
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FIG. 2. Coordinates in the saline oscillatorandz are the radial
Il. PROCEDURE FOR THE NUMERICAL SIMULATION and vertical coordinates,,, , inner radius of the cup;,,;, radius of
I1he outer vessela, radius of the orificep, thickness of the inner
cup; d, depth of the orifice;pin(:po+p2), initial density in the
cup; poutl =po), initial density of the outer vesseH;,, initial
rP1eight of saline watert,, initial height of pure watert,, depth
of the outer vessel. Heye is the initial amount of sodium chloride
per unit volume in the cup angl, is the density of pure water.

We performed a computer simulation of a saline oscillato
with a three-dimensional flow field. We used the basic equa
tions for an incompressible unsteady viscous fluid. Flow ca
be described by the Navier-Stokes equation, #g.and an
equation of continuity, Eq(2),

dpU

B L (U-V) pU=—VP+uV2U+ pg, (1) w 19 7w
ot p + ; ar(ruw)+ ﬁz(w )
(9p+v (pU)=0 @ _ 1 8P+1 J &W+au
at P ' T pez rar|"ar Taz
whereU= (u,v,w) is the velocity;P is the pressurep is the +i<2V‘9_W) _<1+ &)g ®)
density of the fluid,g=(0,0,—g) is the gravitational accel- 9z 9z po) >’
eration; andu is the coefficient of viscosity. Note thatis a
spatiotemporal variable in our systems=p(X,y,z,t). For du U ow
pratical purposes, the density of a fluid can be given as the E+ ?+ E:O’ (6)

sum of the density of wates,, and the density of sals.
Thus, we evaluated the effects of density changes with the

. . : L J
following equation of mass conservation, which includes the Ps

+1 Jd N J
__r(rpsu) E(PSW)

effect of diffusion, a ra
19 aps) J ( (9ps)
J = | rDy—|+ —| Ds—]|, 7
aitSJrV-(psU):DsVzps, ©) ror\ "Sor) az\ "%z @

. . ) e whereu andw are the radial and vertical velocities, respec-
wherepg is the density of salt anB is the diffusion coef- tively: v(=u/po) is the kinematic viscosity.

ficient of salt. In addition to the above equations for fluid motion, we

We chose to use a cylindrical coordinate system with itSy, st also consider the effect of the free surface. For this

origin gt the center of the orifice With'dep(hand radiusa purpose, we adapted the so-called volume of fIG{OF)
(see Fig. 2 so thatr andz are the radial and vertical coor- method[12]. In this method, a functiof (x,y,2)=[0,1] is

dinates. We assume that the flow shows radial symmetryafineq a =1 for spatial elements fully occupied by fluid
with respect to the vertical axis, and we use the Boussines

LSS ) . : . 9nd F=0 elsewhere. The summation Bf over the entire
approximation in the equations of motion. With this frame-

work, the basic equations become cells occupied by fluid. The time dependenceFofs gov-

Py X 19 - p erned by the following equation:
at e T 10 ’
E-FFE(I’FU)‘F E(FW)—O. (8)

po I T ar

LoP 19/ | o
o) T oz

Ju N oW 5 u
oz ar Y
(4)  fluid-dynamic analysis software&uJiTsua-FLOW, provided

system is constant and equals the fractional volume of the

We performed calculations with the above equations using
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by FUJITSU LIMITED [13,14. The parameters and condi-
tions for the numerical calculation were as follows.

The system consists of a cup with an orifice at the bottom
and an outer vessel, as shown in Fig. 2. The parameters ai
rin=2.25 cm, ry,=5.0 cm,a=0.05 cm,b=0.25 cm,d
=0.1 cm,Hy=5.9 cm. We divided the domain into 5232
grids in the radial and vertical directions. To take into ac- a)
count the effect of the fluid dynamics near the orifice, the
space within the orifice was divided into smaller gridx4%
in the radial and vertical directions, where the ratios of the
maximum to minimum grid size are 10 and 4, respectively.
The finite-difference approximation with a second-order cen-
tral scheme was used to solve the basic equations, except fc
the convection term. For the convection term in Ed$,(5),
and (7), the quadratic upstream interpolation for convective
kinematics(QUICK) scheme, which is a second-order accu-
rate finite-difference method was usglb]. The convection (b)
term in Eq. (8) was approximated by a donor-acceptor
method[16]. The slip boundary condition is taken for the
velocity on the wall and the axig €0), except for the wall
within the orifice: the normal velocity component vanishes at
the wall, and there is no gradient in tangential velocity. On
the wall within the orifice, the boundary condition for the
velocity is set to be nonslip: both normal and tangential ve-
locities are always zero on the wall. The free-flux boundary
condition is used to reflect the change in concentration.

FIG. 3. Flow profile in the saline oscillator for the downstream
of saline water(left) and the upstream of pure watgight). (a) An
I1l. OBSERVATION OF THE OSCILLATOR actual experiment in the saline oscillator Wlth,=225 cm, Iyt
IN REAL SPACE =5.78 cm,a=0.05 cm,b=0.5 cm, d=0.1 cm, andp?=0.11

g/cn?. Saline water or pure water was colored by ink for visual-

A saline oscillator was constructed with the following ization of the downward flow or upward flow, respectivel})
conditions, essentially the same as in the numerical simulacomputer simulation of the saline oscillator with,=2.25 cm,
tion: r;,=2.25 cm,r,,=5.78 cm,a=0.05 cm,b=0.25 cm,  rou,=5.0 cm,a=0.05 cm,b=0.5 cm,d=0.1 cm, andp2=0.1
d=0.1 cm(see Fig. 2 The initial amount of sodium chlo- g/cn’. See Fig. 2 for abbreviations.
ride per unit volume in the cup wasgzo.ll g/cnd in the
initial condition, indicating thatp;,=1.11 g/cni, andp,,,  in Fig. 2: g=980, »=0.01 cnt/s, pJ=0.1 g/cn?, Hi,
=1.0 g/cn?. The experiment was started with both of the =4.82 cm,H,,,=4.99 cm. A small change in the initial
initial heights,H;, and H,,, at about 5 cm. At first, the height was shown to have no significant effect on the manner
saline water begins to flow downward, and after approxi-of oscillation. We have, thus, chosen a height difference so
mately 1 min, the downward flow stops. Soon after the fluidas to reduce the induction period before oscillation began.
stops flowing around the orifice, the pure water in the outer
vessel begins to flow upward through the orifice. This up-
ward flow stops after several tens of seconds, and then the
saline water again flows downward. This cycle repeats doz-
ens of times. The period of oscillation is about 24 sec and
stays almost constant; the periodicity increases less than 10%
even after a few hours on the experimental run.

Figure 3a) shows a picture of the saline oscillator moni-
tored with a charge-coupled-devi¢€€ECD) camera. In this
figure, saline water or pure water was colored by ink for
visualization of the downward flow or upward flow, respec-
tively. The change in the level of saline water in the inner
cup was measured with a laser displacement ni&yence,
LPB-02, Japan The results are presented in Fig. 4. From the
amplitude of the rhythmic flow, it becomes clear that 0.12%
of the saline water flows out during each period.

50 um

Level of saline water ((im)

t (sec)

IV. RESULTS OF THE NUMERICAL SIMULATION FIG. 4. Experimental results on the rhythmic change in the level
_ _ _ _ _ of saline water in the inner cup. The broken lines represent single
The numerical simulation was carried out with the follow- exponential fits for the individual stages, during the upward flow

ing coefficients in the basic equations and initial conditionsand the downward flows(t)oe™ '+ const.
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(a) the saline oscillator, there is a small but finite irregularity
4.598 ——————————————————— . e . .
; : around the fringe of the orifice. Such an irregularity could

4'596? H, ; disturb the laminar flow around the orifice, which would in-
il 3 /EISO fluence the periodicity. Actually, we have confirmed that
5 |PUum

X (cm)

4392F little modification on the shape of the orifi¢éor example,
4.5% \/ E by making the periphery of the orifice smootharduces the
4588 ] lengthening of the periodicity by 3050%. In addition to
4586 ——t—— e such an experimental problem, there are also some factors in
the numerical simulation that particularly affect the period-
icity, such as the size and arrangement of the grids and the
boundary conditions. However, taking into account these
factors in both the experiment and the simulation, the differ-
ence in periodicity is not considered to be a serious matter.
In Fig. 4, the broken lines are depicted as single exponen-
tial, together with the experimental traces on the height of
the level of the saline water. From this, it is clear that indi-
vidual periods both on upward flow and downward flow is
interpreted well with a first-order linear differential equation

(b)

W (cmy/sec)

(©

SNy 3 as in Eq.(10),

N j | J x(t)=—kx(t) (k>0). (10

"E 5 ] - The next problem is how to interpret the process of the

|% oF E switching of the flow direction. Let us consider the critical
S hydrostatic pressure required to stop the downward flow of

saline water and to initiate the upward flow of pure water.

Based on the conservation of the total fluid volume, the
FIG. 5. (&) Numerical simulation of the change in the level of changes in the heights of saline and pure watérandAh’,

saline water in the inner cup The broken line shows the equilib- are related to each other by the ratio of the surface areas in

rium height Q—leq—4 59 cn), where the inner and outer hydrostatic the inner cup and the outer vesssl, andS,;,

pressures are equal at the center of the orifice;-d/2. (b) The

average velocity at the orificey. (c) The acceleration at the orifice, Sin

dw/dt. AhT=- soutAh' (12)

t (sec)

Under these initial conditions, saline water first began to The initial equilibrium heightng is given by

flow downward, and upward flow began 70 sec later, i.e., 0

oscillation began at this time. Figuréb3 shows the spatial Heq=Hin—Ah, (12
density profile of salt for the states with downward flow and
upward flow. Figures &) and 5b) show the changes in the
level of saline water in the inner cupand the average ve-

locity at the orificew, wherew is defined as (p2+po)g

whereAh is obtained from the following equation:

d
Hin+§+Ah

d
:Pog(Hout+ E""Ah,)-
(13

0 a
- Tdfdfo w(r.z,)rdrdz. ©  From Eq.(13), ng is calculated to be 4.59 cm in the first
cycle of the oscillation. As we mentioned in Sec. IV, the

The period of oscillation was ca. 41 sec. Based on the changéensity difference decreases with oscillatory flow. By denot-
in the water level, it is found that 0.16% of the saline watering AH¢q as the difference between successive oscillations,
escaped from the cup during each period of oscillation. Thighe equilibrium height of thath oscillation,H¢4(n) is given
may accord with 0.12% in the corresponding experiment. 1Py

the simulation, as an artifact we noticed that, during the up- 0

ward flow in each period of oscillation, the amount of salt in Heg(N)=Heqt (N—1)AHeq. (14)

the inner cup increased by 0.001 g, which is considered tq

have a negligible effect on the manner of the oscillation in ' the result of the numerical simulatiohiHe is calcu-
the simulation. lated to be 1.68 10 * cm. By adapting a “moving axis,” as

Ax=X—AHgy(n), the limit-cycle behavior represented by

Ax vsw, is given as in Fig. 6, where is the average fluid
velocity at the orifice and the interval between the data
As shown above, our numerical simulation reproduced thgoints is 0.1 sec. The cycles change Aas-A’'—B—B’
experimental trend rather well, except for the difference in—A. The temporal changes in the water level, and the aver-
the period of oscillationT=24 sec in the experiment and age velocity and acceleration at the orifice are given in Figs.
T=41 sec in the simulation. In our actual experiment with5(a), 5(b) and Sc). The flow accelerates upward &A—A’,

V. DISCUSSION
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and decelerates durif —B. In B—B’, upward flow stops U (sec)

and downward flow accelerates. Bi —A, downward flow FIG. 7. Time-dependent change in the individual components of
decelerates. Here, the periods #n-A’ and B—B' are the force needed to induce acceleration in fluid fléw,, is the
shorter than 0.5 sec, corresponding to the process in the egenvection termF . is the pressure term, arig,;s is the viscosity
change of fluid within the orifice, from saline water to pure term, andF ., is the gravity term.
water and vice versa, respectively. As the switching of the
flow is almost abrupt, the magnitude of the acceleration at Iw
the moment of the change in flow direction are two orders as = feont fpret fuis+ fgra (16)
large as that during one-directional flow through the orifice
as is clear in the result of our simulation. If we carefully 19 P
examine the switching process, it is apparent that just after foon=— — — (ruw) ——(w?), (17)

- rar Jz
the stop of the downward flow of saline water, pure water
rises upward through the orifice from its edge, and this up-

ward flow then accelerates. Except for the “moment” of the =— 1P 18
. . . - . pre ’ ( )
switching of the flow, the height exhibits a single- po 9Z
exponential curve in the simulation, corresponding well to
the present experimefig. 5a)]. g Lo ow) Loy ou 9, W
To characterize the manner of the fluid motion, let us VS ar ar ] roar dz| 9z iz )’
estimate the Reynolds number in the saline oscillator (19
wi Ps
pwl fyra=—0— —0. 20
Re=7, (15) gra= 9 Pog (20)

By integrating Eq(16) over the entire volume in the orifice,
where the density of the fluid has a value between 1.0 and the net driving force is given as in EQ1).
1.1 g/cnt, the characteristic length(l =2a) is 0.1 cm, and

w is at the most 1.9 cm/sec, as shown in Fig. 5. Thus, the 2 (0 fagw B 2 (0 ra
maximum Reynolds number is no more than 20. This sug-  24) 4 Oﬁrdrdz— 2d)-alo (feont fpre
gests that the effect of turbulence is almost negligible in this

phenomenon. _ o _ + st fgra)rdrdz
Let us now examine the manner of the periodic flow using
cylindrical coordinates. In the simulation, we have adopted =Fcont Fpret FuistFgra. (21)

the radial symmetry with respect to the vertical axis. We

think that the numerical simulation on the approximationFigure 7 shows the temporal changes in the different com-
with radial symmetry may be almost satisfactory to describgoonents,F ..+ Fgra, Fyis, Fcon, Which accompany peri-
the oscillator, at least on the switching between upward anddic flow in the saline oscillator, as deduced from the nu-
downward flow. The driving force is considered to consist ofmerical simulation. Based on this figur€,,, and F
four components; convectidn,,, and the gradients of pres- always have the role of depressing the oscillation, Bpg
sure f,¢, viscosity f,s, and gravityfy,,. The effects of +Fg,, accelerates the flow. Figure¢aB 8(b) and 8c) show
acceleration can therefore be described as follows: the change of the respective terfyon, Fuis, Fpret Fgras
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(a) (d) - From the above results and discussion, it becomes evident
Fpre that the dynamical behavior is interpreted with different
60p E characteristic stages between the continuous upward or
WVEN, . E downward flow, and the switching of the flow. Then, let us
5 *, 20;'\._, £ discuss further the mechanism of the switching. Based on
= s O —\' Fig. 8@a), it is apparent thafF,, is negligibly small com-
-20¢ © N pared to other components. As for the changd=jn,, we
-40F E have noticed that the first term in EQL9) accounts for 96%
GO bt il of F,is; thus, the second and third terms are negligible. We
2 1 Lis ° also noticed that the flow profile at the orifice could be rep-
(b) (e) F_* resented almost perfectly with a parabola. In fact, there was
20p - actually only slight deviation from ideal Hagen-Poiseuille
of ] flow. By introducing a correction factoe to Hagen-
20F . L Poiseuille flow,F ;s can be represented as
2 *8 -40F E
=0 = -60F ' ; 8v —
-8of a 4 Fuis=— 5&W. (23
oo ——— : ?
24 4 PO, By comparison with the results of the simulatienwas de-
W emied) termined to bes=0.94. Thus, the deceleration of the flow
(¢ Fore + Fora (f) Fpre + Fora can almost be characterized by the first ternFjp,. Then,
6o T A SO Jet us now discuss the pressure term in detail. We divide the
s O /] . of y j pressure on both sides of the orifies0,—d into hydro-
m 20 3 g “ F\ static pressure and the difference fronfPit(z). P*(z) cor-
+® Of 3 "‘; -50:-3' : . A responds to the effects of the discontinuous density distribu-
20 F 3 ® 2 \_’ ‘ ] tion and the velocity of the flowing fluid,
A0 - 3 =100 4 g
60} : 5 A 5 P(0)=(pS+ po)gx+P*(0), (24)
Bttt st
W (cm/sec) W (cm/sec) P(_d)zpog(xr+d)+P*(_d)a (25)

FIG. 8. (a) Phase portrait oF .,,(cm/seé) with respect to the

J— I = i
average velocityw(cm/sec) at the orifice(b) Phase portrait of wherex" is the level of pure water frora=0 in the outer

) — vessel and
F,is(cm/sed) with respect to the average velocity(cm/sec), at
the orifice.(c) Phase portrait oF .+ Fgra(cm/seé) with respect S, S
— n n
to the average velocityv at the orifice.(d) Phase portrait of X'=-— S X+ S—Hm+H0ut). (26)
out out

F;re(cm/seé) with respect to the average velocity(cm/sec) at
the orifice.(e) Phase portrait oFara(cm/se&) with respect to the

Using the above expressioR .. becomes
average velocityw(cm/sec) at the orifice(f) Phase portrait of

Foret Fara(cm/sed) with respect to the average velocity 1 P(0)—P(—d)
w(cm/sec) at the orifice. The interval between the data points is 0.1 Fpre= — E W
sec.

P*(=d)=P*(0) _ (po+pS)gx—pog(x')
at intervals of 0.1 sec as in Fig. 6. From this figure, it is clear pod - pod g

that all termsF¢,,, F,is, andFpe+Fg, are proportional

to the average velocity, except the moment of flow switch- 27)
ing. During the continuous upward flow and downward flow
the coefficients of,, andF ;s are negative and the coef-
ficient of Fp,c+Fgra is positive. The summation of these
contributions is negative

"We can obtain the second term as a function sfrictly and
the third term is cancelled by the first termfef,,. We use

the expressior ;. Fg, as the first term of . and the

second term_oFg,a. Figures &d) and 8e) showF;,e vswW

— andFg,, vs w, as in Fig. 6. The interval between the data
d_W: —kw (k>0). (22) points is 0.1 sec. Based on the results of the simulation, the

dt characteristics oﬁ;re would be expressed as E@8) with
the symmetry of a cubic function

This result explains why the profile of the water level in an -

inner cupx is expressed by the profibe(t)ce *'. The pe- Fire=W—30W>. (28
riod is, thus, determined by the competition between the

pressure gradient and damping effect such as viscosity, as we shown in Fig. &), F;ra is represented as signum func-
mentioned before. tion with a good approximation,
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pgg pgg . As have been shown both on the simulation and the experi-
gra=— - + > sgnw). (299  ment, the system is “energized” due to the sudden change in
the “effective mass” of the flow. Such an abrupt energiza-
tion, or the process of switching, exhibits the odd symmetry
with respect to the fluid velocity. Thus, such an effect can be
2 gy most simply represented as the cubic function of the velocity
. (30) as in the second term on the right side in the Rayleigh equa-
ot tion, Eq.(35).
) ) . In the saline oscillator, energy is stored as gravitational
As (1), the level of saline water, is almost independent ongapility where the high-density saline water is situated

the positionr, it may be allowed for us to adapt an ordinary ghqye the low density of pure water. We took the potential
differential instead of the partial differential in the above energy of a discrete fluid cell as

equation,

From the definitionw is given as

Fin

a

ax  dx UG k)=p(i,k)AV(i,k)gh(i k), (37)

wherei and k are the grid numbers in the horizontal and
vertical directions, respectively, and reflect the position of
the cell. p(i,k)=po+ps(i,k) is the density of the cell,
dX| 21 dx 0% B AV(i,k) is the volume of the cell, ant(i,k) is the height
(_) }__wg X+ —= sgriw)+C, from the bottom of the outer vessel. By summing E8j7)
dt dt 2 over the entire fluid, the net potential energy can be evalu-
(32 ated. The stored potential energy in the saline water in the
inner cup is, thus, calculated to bex40° [g cn?/s?], com-
whereA,B,C,w, are positive constants. It is worth noting pared to that in the final state where the fluid exhibits a
that the first term is always negative. On this differentialyniform density and the fluid levels in the inner cup and the
equation without the constant and signum function, the sysputer vessel are the same. Each oscillation consumes 0.08%
tem becomes a damped oscillator, becaugés larger than  of this stored energy, where 78% of the consumed energy is
the square of the coefficient @f. The limit cycle is, thus, converted into kinetic energy and the rest is dissipated by
maintained by the repetitive sudden change in the sign of theiscosity.
velocity. The conclusion that the essence of the saline oscillator
From the characteristics given in Fig(fg the essential can be described with a Rayleigh equation is consistent with
feature is represented with polynomial expansion througlprevious findings on coupling between saline oscillators

For the above consideration, ER1) becomes as follows
with the substitution oK to x—Hq,

d?x
—=—-A/1+B
dt?

numerical fitting [4,7,8, i.e., when two cups of saline water with orifices are
situated in a same outer vessel of pure water, the rhythmic
F* o+ F* . =—51+90w— 30w+ O(w?). (33)  flows self-synchronize in an exact antiphase mode. This cu-
. ¢ rious behavior has been successfully interpreted by coupled
Thus Eq.(21) can be rewritten as Rayleigh equations, at least phenomenologically. Thus, the

present study provides a theoretical basis for why the cou-

d2x dX dx\3 pling between saline oscillators can be rather well simulated
F = SGE —1.2x10° a) —7X. (34  with coupled Rayleigh equations.
Interestingly, this ordinal differential equation corresponds to VI. CONCLUSIONS

the so-called Rayleigh equati§8,7] o ] ) ] ) )
(1) The periodic change in fluid flow in a saline oscillator

3 was reproduced by a numerical simulation with the Navier-
- w3X, (35)  Stokes equation(2) The driving force of this periodic fluid
flow is gravitational instability, and the main origin of en-

. ergy dissipation is the effect of viscosit{3) The essential

WhereA,B,wé are positive constants. The Rayleigh equationbehavior in a saline oscillator can be interpreted with a non-
implies the following physical meaning: the third term on thelinear second-order differential equation, the Rayleigh equa-
right together with the left second-time derivative constitutegion.

an oscillator, and the first and second terms on the right

correspond to “negative” and positive friction, respectively.

In the actual saline oscillatoX is the fluid level from the ACKNOWLEDGMENTS

equilibrium height, andwﬁ corresponds to Eq(36) as is
deduced from Eqg21), (26) and(27),

2 0
(1+ Sin  Ps

dZX_,AdX _[dX
dez dt Cldt
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